Coupled enzymatic hydrolysis and ethanol fermentation: ionic liquid pretreatment for enhanced yields

نویسندگان

  • Venkata Prabhakar Soudham
  • Dilip Govind Raut
  • Ikenna Anugwom
  • Tomas Brandberg
  • Christer Larsson
  • Jyri-Pekka Mikkola
چکیده

BACKGROUND Pretreatment is a vital step upon biochemical conversion of lignocellulose materials into biofuels. An acid catalyzed thermochemical treatment is the most commonly employed method for this purpose. Alternatively, ionic liquids (ILs), a class of neoteric solvents, provide unique opportunities as solvents for the pretreatment of a wide range of lignocellulose materials. In the present study, four ionic liquid solvents (ILs), two switchable ILs (SILs) DBU-MEA-SO2 and DBU-MEA-CO2, as well as two 'classical' ILs [Amim][HCO2] and [AMMorp][OAc], were applied in the pretreatment of five different lignocellulosic materials: Spruce (Picea abies) wood, Pine (Pinus sylvestris) stem wood, Birch (Betula pendula) wood, Reed canary grass (RCG, Phalaris arundinacea), and Pine bark. Pure cellulosic substrate, Avicel, was also included in the study. The investigations were carried out in comparison to acid pretreatments. The efficiency of different pretreatments was then evaluated in terms of sugar release and ethanol fermentation. RESULTS Excellent glucan-to-glucose conversion levels (between 75 and 97 %, depending on the biomass and pretreatment process applied) were obtained after the enzymatic hydrolysis of IL-treated substrates. This corresponded between 13 and 77 % for the combined acid treatment and enzymatic hydrolysis. With the exception of 77 % for pine bark, the glucan conversions for the non-treated lignocelluloses were much lower. Upon enzymatic hydrolysis of IL-treated lignocelluloses, a maximum of 92 % hemicelluloses were also released. As expected, the ethanol production upon fermentation of hydrolysates reflected their sugar concentrations, respectively. CONCLUSIONS Utilization of various ILs as pretreatment solvents for different lignocelluloses was explored. SIL DBU-MEA-SO2 was found to be superior solvent for the pretreatment of lignocelluloses, especially in case of softwood substrates (i.e., spruce and pine). In case of birch and RCG, the hydrolysis efficiency of the SIL DBU-MEA-CO2 was similar or even better than that of DBU-MEA-SO2. Further, the IL [AMMorp][OAc] was found as comparably efficient as DBU-MEA-CO2. Pine bark was highly amorphous and none of the pretreatments applied resulted in clear benefits to improve the product yields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surfactant-Aided Phosphoric Acid Pretreatment to Enable Efficient Bioethanol Production from Glycyrrhiza Glabra Residue

Glycyrrhiza glabra residue (GGR) was efficiently subjected to concentrated phosphoric acid (PA) pretreatment with/without surfactant assistance, and promising results were obtained following separate enzymatic hydrolysis and fermentation (SHF) of the biomass. Pretreatment was carried out using 85 % PA either at 50 or 85 °C with 12.5 % solid loading for 30 min. In parallel experiments, ...

متن کامل

Fundamentals of Biomass Pretreatment at Low pH

A wide variety of conversion processes can be used to generate fuels and chemicals from biomass, with many including a hydrolysis and/or dehydration reaction at low pH as an initial stage. In the case of acid hydrolysis of biomass prior to enzymatic hydrolysis and fermentation, this step is called pretreatment. Due to the diversity of conversion processes, it is difficult to define a single set...

متن کامل

Enzymatic Saccharification and Ethanol Fermentation of Reed Pretreated with Liquid Hot Water

Reed is a widespread-growing, inexpensive, and readily available lignocellulosic material source in northeast China. The objective of this study is to evaluate the liquid hot water (LHW) pretreatment efficiency of reed based on the enzymatic digestibility and ethanol fermentability of water-insoluble solids (WISs) from reed after the LHW pretreatment. Several variables in the LHW pretreatment a...

متن کامل

Enzyme hydrolysis and ethanol fermentation of liquid hot water and AFEX pretreated distillers' grains at high-solids loadings.

The dry milling ethanol industry produces distiller's grains as major co-products, which are composed of unhydrolyzed and unfermented polymeric sugars. Utilization of the distiller's grains as an additional source of fermentable sugars has the potential to increase overall ethanol yields in current dry grind processes. In this study, controlled pH liquid hot water pretreatment (LHW) and ammonia...

متن کامل

The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation.

High yields of hemicellulosic and cellulosic sugars are critical in obtaining economical conversion of agricultural residues to ethanol. To optimize pretreatment conditions, we evaluated oxalic acid loading rates, treatment temperatures and times in a 2(3) full factorial design. Response-surface analysis revealed an optimal oxalic acid pretreatment condition to release sugar from the cob of Zea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015